Go
GreptimeDB 提供了用于高吞吐量数据写入的 ingester 库。 它使用 gRPC 协议,支持自动生成表结构,无需在写入数据前创建表。 更多信息请参考 自动生成表结构。
GreptimeDB 提供的 Go Ingest SDK 是一个轻量级、并发安全的库,使用起来非常简单。
快速开始 Demo
你可以通过快速开始 Demo 来了解如何使用 GreptimeDB Go SDK。
安装
使用下方的命令安装 Go Ingest SDK:
go get -u github.com/GreptimeTeam/[email protected]
引入到代码中:
import (
greptime "github.com/GreptimeTeam/greptimedb-ingester-go"
ingesterContext "github.com/GreptimeTeam/greptimedb-ingester-go/context"
"github.com/GreptimeTeam/greptimedb-ingester-go/table"
"github.com/GreptimeTeam/greptimedb-ingester-go/table/types"
)
连接数据库
如果你在启动 GreptimeDB 时设置了 --user-provider
,
则需要提供用户名和密码才能连接到 GreptimeDB。
以下示例显示了使用 SDK 连接到 GreptimeDB 时如何设置用户名和密码。
cfg := greptime.NewConfig("127.0.0.1").
// 将数据库名称更改为你的数据库名称
WithDatabase("public").
// 默认端口 4001
// WithPort(4001).
// 如果服务配置了 TLS ,设置 TLS 选项来启用安全连接
// WithInsecure(false).
// 设置鉴权信息
// 如果数据库不需要鉴权,移除 WithAuth 方法即可
WithAuth("username", "password")
cli, _ := greptime.NewClient(cfg)
数据模型
表中的每条行数据包含三种类型的列:Tag
、Timestamp
和 Field
。更多信息请参考 数据模型。
列值的类型可以是 String
、Float
、Int
、JSON
, Timestamp
等。更多信息请参考 数据类型。
设置表选项
虽然在通过 SDK 向 GreptimeDB 写入数据时会自动创建时间序列表,但你仍然可以配置表选项。 SDK 支持以下表选项:
auto_create_table
:默认值为True
。如果设置为False
,则表示表已经存在且不需要自动创建,这可以提高写入性能。ttl
、append_mode
、merge_mode
:更多详情请参考表选项。
你可以使用 ingesterContext
设置表选项。
例如设置 ttl
选项:
hints := []*ingesterContext.Hint{
{
Key: "ttl",
Value: "3d",
},
}
ctx, cancel := context.WithTimeout(context.Background(), time.Second*3)
ctx = ingesterContext.New(ctx, ingesterContext.WithHints(hints))
// 使用 ingesterContext写入数据到 GreptimeDB
// `data` 对象在之后的章节中描述
resp, err := c.client.Write(ctx, data)
if err != nil {
return err
}
关于如何向 GreptimeDB 写入数据,请参考以下各节。
低层级 API
GreptimeDB 的低层级 API 通过向具有预定义模式的 table
对象添加 row
来写入数据。
创建行数据
以下代码片段首先构建了一个名为 cpu_metric
的表,其中包括 host
、cpu_user
、cpu_sys
和 ts
列。
随后,它向表中插入了一行数据。
该表包含三种类型的列:
Tag
:host
列,值类型为String
。Field
:cpu_user
和cpu_sys
列,值类型为Float
。Timestamp
:ts
列,值类型为Timestamp
。
// 为 CPU 指标构建表结构
cpuMetric, err := table.New("cpu_metric")
if err != nil {
// 处理错误
}
// 添加一个 'Tag' 列,用于主机标识符
cpuMetric.AddTagColumn("host", types.STRING)
// 添加一个 'Timestamp' 列,用于记录数据收集的时间
cpuMetric.AddTimestampColumn("ts", types.TIMESTAMP_MILLISECOND)
// 添加 'Field' 列,用于测量用户和系统 CPU 使用率
cpuMetric.AddFieldColumn("cpu_user", types.FLOAT)
cpuMetric.AddFieldColumn("cpu_sys", types.FLOAT)
// 插入示例数据
// 注意:参数必须按照定义的表结构中的列的顺序排列:host, ts, cpu_user, cpu_sys
err = cpuMetric.AddRow("127.0.0.1", time.Now(), 0.1, 0.12)
err = cpuMetric.AddRow("127.0.0.1", time.Now(), 0.11, 0.13)
if err != nil {
// 处理错误
}
为了提高写入数据的效率,你可以一次创建多行数据以便写入到 GreptimeDB。
cpuMetric, err := table.New("cpu_metric")
if err != nil {
// 处理错误
}
cpuMetric.AddTagColumn("host", types.STRING)
cpuMetric.AddTimestampColumn("ts", types.TIMESTAMP_MILLISECOND)
cpuMetric.AddFieldColumn("cpu_user", types.FLOAT)
cpuMetric.AddFieldColumn("cpu_sys", types.FLOAT)
err = cpuMetric.AddRow("127.0.0.1", time.Now(), 0.1, 0.12)
if err != nil {
// 处理错误
}
memMetric, err := table.New("mem_metric")
if err != nil {
// 处理错误
}
memMetric.AddTagColumn("host", types.STRING)
memMetric.AddTimestampColumn("ts", types.TIMESTAMP_MILLISECOND)
memMetric.AddFieldColumn("mem_usage", types.FLOAT)
err = memMetric.AddRow("127.0.0.1", time.Now(), 112)
if err != nil {
// 处理错误
}
插入数据
下方示例展示了如何向 GreptimeDB 的表中插入行数据。
resp, err := cli.Write(context.Background(), cpuMetric, memMetric)
if err != nil {
// 处理错误
}
log.Printf("affected rows: %d\n", resp.GetAffectedRows().GetValue())
流式插入
当你需要插入大量数据时,例如导入历史数据,流式插入是非常有用的。
err := cli.StreamWrite(context.Background(), cpuMetric, memMetric)
if err != nil {
// 处理错误
}
在所有数据写入完毕后关闭流式写入。 一般情况下,连续写入数据时不需要关闭流式写入。
affected, err := cli.CloseStream(ctx)
高层级 API
SDK 的高层级 API 使用 ORM 风格的对象写入数据, 它允许你以更面向对象的方式创建、插入和更新数据,为开发者提供了更友好的体验。 然而,高层级 API 不如低层级 API 高效。 这是因为 ORM 风格的对象在转换对象时可能会消耗更多的资源和时间。
创建行数据
type CpuMetric struct {
Host string `greptime:"tag;column:host;type:string"`
CpuUser float64 `greptime:"field;column:cpu_user;type:float64"`
CpuSys float64 `greptime:"field;column:cpu_sys;type:float64"`
Ts time.Time `greptime:"timestamp;column:ts;type:timestamp;precision:millisecond"`
}
func (CpuMetric) TableName() string {
return "cpu_metric"
}
cpuMetrics := []CpuMetric{
{
Host: "127.0.0.1",
CpuUser: 0.10,
CpuSys: 0.12,
Ts: time.Now(),
}
}
插入数据
resp, err := cli.WriteObject(context.Background(), cpuMetrics)
log.Printf("affected rows: %d\n", resp.GetAffectedRows().GetValue())
流式插入
当你需要插入大量数据时,例如导入历史数据,流式插入是非常有用的。
err := streamClient.StreamWriteObject(context.Background(), cpuMetrics, memMetrics)
在所有数据写入完毕后关闭流式写入。 一般情况下,连续写入数据时不需要关闭流式写入。
affected, err := cli.CloseStream(ctx)
插入 JSON 类型的数据
GreptimeDB 支持使用 JSON 类型数据 存储复杂的数据结构。
使用此 ingester 库,你可以通过字符串值插入 JSON 数据。
假如你有一个名为 sensor_readings
的表,并希望添加一个名为 attributes
的 JSON 列,
请参考以下代码片段。
在低层级 API 中,
你可以使用 AddFieldColumn
方法将列类型指定为 types.JSON
来添加 JSON 列。
然后使用 struct
或 map
插入 JSON 数据。
sensorReadings, err := table.New("sensor_readings")
// 此处省略了创建其他列的代码
// ...
// 将列类型指定为 JSON
sensorReadings.AddFieldColumn("attributes", types.JSON)
// 使用 struct 插入 JSON 数据
type Attributes struct {
Location string `json:"location"`
Action string `json:"action"`
}
attributes := Attributes{ Location: "factory-1" }
sensorReadings.AddRow(<other-column-values>... , attributes)
// 以下省略了写入数据的代码
// ...
在高层级 API 中,你可以使用 greptime:"field;column:details;type:json"
标签将列类型指定为 JSON。
type SensorReadings struct {
// 此处省略了创建其他列的代码
// ...
// 将列类型指定为 JSON
Attributes string `greptime:"field;column:details;type:json"`
// ...
}
// 使用 struct 插入 JSON 数据
type Attributes struct {
Location string `json:"location"`
Action string `json:"action"`
}
attributes := Attributes{ Action: "running" }
sensor := SensorReadings{
// ...
Attributes: attributes,
}
// 以下省略了写入数据的代码
// ...
请参考 SDK 仓库中的示例 获取插入 JSON 数据的可执行代码。